The effects of C5-substituted 2,4-diaminoquinazolines on selected transcript expression in spinal muscular atrophy cells
نویسندگان
چکیده
C5-substituted 2,4-diaminoquinazolines (2,4-DAQs) ameliorate disease severity in SMA mice. It is uncertain, however, that these compounds increase SMN protein levels in vivo even though they were identified as activators of the SMN2 promoter. These compounds also regulate the expression of other transcripts in neuroblastoma cells. In this study, we investigate the mechanism by which the 2,4-DAQs regulate the expression of SMN2 as well as other targets. D156844, D158872, D157161 and D157495 (RG3039) increased SMN2 promoter-driven reporter gene activity by at least 3-fold in NSC-34 cells. These compounds, however, did not significantly increase SMN2 mRNA levels in type II SMA fibroblasts nor in NSC-34 cells, although there was a trend for these compounds increasing SMN protein in SMA fibroblasts. The number of SMN-containing gems was increased in SMA fibroblasts in response to 2,4-DAQ treatment in a dose-dependent manner. ATOH7 mRNA levels were significantly lower in type II SMA fibroblasts. 2,4-DAQs significantly increased ATOH7, DRNT1 and DRTN2 transcript levels in type II SMA fibroblasts and restored ATOH7 levels to those observed in healthy fibroblasts. These compounds also increase Atoh7 mRNA expression in NSC-34 cells. In conclusion, 2,4-DAQs regulate SMN2 by increasing protein levels and gem localization. They also increase ATOH7, DRNT1 and DRNT2 transcript levels. This study reveals that the protective effects of 2,4-DAQs in SMA may be independent of SMN2 gene regulation. These compounds could be used in concert with a proven SMN2 inducer to develop a multi-faceted approach to treating SMA.
منابع مشابه
Effects of 2,4-diaminoquinazoline derivatives on SMN expression and phenotype in a mouse model for spinal muscular atrophy.
Proximal spinal muscular atrophy (SMA), one of the most common genetic causes of infant death, results from the selective loss of motor neurons in the spinal cord. SMA is a consequence of low levels of survival motor neuron (SMN) protein. In humans, the SMN gene is duplicated; SMA results from the loss of SMN1 but SMN2 remains intact. SMA severity is related to the copy number of SMN2. Compound...
متن کاملIn vitro and in vivo effects of 2,4 diaminoquinazoline inhibitors of the decapping scavenger enzyme DcpS: Context-specific modulation of SMN transcript levels
C5-substituted 2,4-diaminoquinazoline inhibitors of the decapping scavenger enzyme DcpS (DAQ-DcpSi) have been developed for the treatment of spinal muscular atrophy (SMA), which is caused by genetic deficiency in the Survival Motor Neuron (SMN) protein. These compounds are claimed to act as SMN2 transcriptional activators but data underlying that claim are equivocal. In addition it is unclear w...
متن کاملDrawing Word co-occurrence map of Spinal Muscular Atrophy disease
Introduction: The purpose of this article is to evaluate the status of articles in the field of Spinal Muscular Atrophy According to the Scientometrics indices Word co-occurrence map of this field . Methods: The present study is an applied one with a quantitative approach and a descriptive approach. It has been done using scientometrics and the co-occurrence words analysis technique. Document...
متن کاملSpinal Muscular Atrophy: A Short Review Article
Spinal muscular atrophy (SMA) is a genetic disorder which affect nervous system and is characterized with progressive distal motor neuron weakness. The survival motor neuron (SMN) protein level reduces in patients with SMA. Two different genes code survival motor neuron protein in human genome. Skeletal and intercostal muscles denervation lead to weakness, hypotony, hyporeflexia, respiratory fa...
متن کاملEffect of Spinal Nerve Ligation after Endurance Training on the Gene Expression of MST1 and MAFbx in Plantaris Muscle of Male Wistar Rats
Background and purpose: Reduction of muscle mass occurs in some models of muscle atrophy during mechanical unloading status and MST1 and MAFbx genes are believed to have a role. In the present study, the effect of reduced physical activity in the form of spinal nerve ligation (SNL) after a period of endurance training (ET) on the expression of MST1 and MAFbx genes were examined in the rat plant...
متن کامل